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ABSTRACT 

 
In this paper, we present a new approach to regional heart 
functional analysis employing a Hidden Markov Model 
(HMM) approach for cardiac disease classification. We 
examine the use of an HMM for local wall motion 
classification based on stress echocardiography. A wall 
segment model is developed for a normal and an abnormal 
heart and the experiments are performed on rest and stress 
sequences. We achieve a good accuracy of classification, 
particularly for the normal data but with also promising 
results for the abnormal case. 
 

Index Terms— Local Wall Motion Analysis, Stress 
Echocardiography, Hidden Markov Models. 
 

1. INTRODUCTION 
 
Analysis of left ventricular (LV) regional function is 
important for diagnosing heart disease, especially to detect 
myocardial ischemia (a disease of heart muscle). In current 
clinical practice, the analysis mostly relies on visual 
assessment by experienced cardiologists. This makes the 
diagnosis of regional heart function disease a highly 
subjective and operator-dependent problem. While much has 
been done to attempt to automate the task of wall motion 
analysis on rest image sequences, there is a very small 
literature on analysis of stress echocardiography. Stress 
sequences (where the heart has been stressed by exercise or 
use of a pharmacological drug e.g. dobutamine) are more 
difficult to automatically analyse as the non-rigid motion of 
the heart is more challenging to track. Further, to our 
knowledge there has been no prior attempt to automatically 
classify heart motion based on the combined information 
derived from a rest and a stress sequence. This is the subject 
of this paper. 
 The first step of automated regional heart function 
analysis is to detect the heart wall borders. Many techniques 
have been developed to detect and automatically track both 
the endocardial and epicardial borders of the left ventricle 
(LV). Current automated 2D echocardiography image 
tracking technology is now sufficiently well-developed for 
application on good-to-medium quality rest data [1]. 
However, further studies need to be done to show that this is 

also true for stress echocardiography. In the work reported 
here, we used semi-automated derived contours as our initial 
focus has been on classification not automated tracking. 
 The second step of automated regional heart function 
analysis is classification of heart segmental function as either 
normal or abnormal based on the extracted contours (heart 
wall borders). This is the focus of this paper. In our prior 
work [2], we performed global wall motion classification 
using an HMM approach and promising results were 
obtained. In the literature we are only aware of local wall 
motion classification using the PCA approach and on rest 
sequences only [3]. 
 This contribution investigates the use of a Hidden 
Markov Model (HMM) as a tool for regional stress 
echocardiography classification. Hidden Markov models are 
especially known for their application in temporal pattern 
recognition such as speech [4] and biosignals [5] because of 
their ability to successfully learn the time-varying 
characteristics of signals. Therefore, we would like to 
employ an HMM approach since the cardiac data inherits the 
time-varying and sequential properties. To the best of our 
knowledge, there is no other published work incorporating 
HMMs with regional heart function analysis. The most 
closely related work is the use of a HMM for 2D shape 
analysis [6]-[8], particularly [7] which implemented a HMM 
for spatio-temporal pattern recognition. 
 

2. HIDDEN MARKOV MODELS 
 
A detailed tutorial on HMMs can be found in [4] and a brief 
description based on that paper is given here. A hidden 
Markov model (HMM) is a probabilistic model which 
describes the statistical relationship between an observable 
sequence O and a “hidden” state sequence S. The hidden 
state is discrete, but the observation values may be either 
continuous or discrete in nature [5]. 
An HMM is characterized by the following parameters: 

1) The number of states of the model, N. 
2) The state transition matrix, A 
3) The observation probability distribution, B = {bN} 

for each state N 
4) The initial state distribution,  

However, for convenience, the HMM  is parameterized by 
A, B and , with the notation:  = (A, B, ). 
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There are three basic problems associated with HMMs: 
1. The classification/evaluation problem 

Given a model  and a sequence of observations O, we 
would like to compute the probability that the 
observations are generated by the model, p(O| ). This 
problem can be solved by a ‘forward-backward’ 
procedure [4]. 

2. The decoding problem 
Given a model  and a sequence of observations O, we 
would like to find the most likely sequence of hidden 
states that could have generated the observations. This 
problem is typically solved by the Viterbi algorithm [4]. 

3. The learning/training problem 
Given a set of observation sequences, we would like to 
adjust the model parameters,  = (A, B, ) to maximize 
the probability of the given dataset. This problem is 
typically solved by the EM algorithm [4]. 

In our work we deal with the first and third problems. A 
regional heart function model needs to be learned from a 
training set by the EM algorithm before using the forward-
backward procedure for classification of a new dataset. 
 

3. METHODOLOGY 
 
3.1. Patient Data 
 
The available database consisted of 30 studies of Contrast 
DSE (Dobutamine Stress Echocardiography) data acquired 
by two cardiologists as standard B-mode ultrasound image 
sequences. Each study contained: 
• 4 planes: 2-chamber (2C), 3-chamber (3C), 4-chamber 

(4C) and short-axis (SAX) views. 
• 3 stress stages: rest (no dobutamine), intermediate (low-

dose dobutamine) and peak (the maximum dose that a 
patient can take). 
In this paper, we utilized the 2C data (which has 6 

segments) at the resting phase and at the peak level of stress. 
In a standard stress examination, only the systolic (heart 
contracts) phase is recorded. Therefore, each data consists of 
systole only starting from the end of diastolic (ED) phase to 
the end-of-systolic (ES). 

For regional functional analysis, the left ventricle is 
divided into 17 segments but mostly only 16 are measurable 
(especially for abnormal hearts) [9]. Clinical wall functional 
assessment evaluates systolic thickening1 and endocardial 
wall motion for each segment. A normal (healthy) 
myocardial segment shows systolic thickening and also 
endocardial movement towards the centre of the cavity. Each 
of the 16 segments were labelled 1 - 4 (1 = normal, 2 = 
hypokinesis, 3 = akinetic, 4 = dyskinetic). For simplicity, we 
grouped them into 2 classes only (1 = normal, 2-4 = 
abnormal). 

                                                 
1 The myocardial wall thickening during systole (the contraction of 
the heart) phase 

3.2. Wall Motion Classification 
 

 

Figure 1: Diagram of Wall Motion Classification process 

Figure 1 shows the general process of our HMM-based wall 
motion classification method, which can be summarized as 
follows: 
 

1. Firstly, the myocardial contours were extracted by 
Quamus®2 software. These were then validated by 
two experienced cardiologists. 

2. Each contour was then divided into six segments 
(for 2C data) and a number of features estimated to 
characterize cardiac wall motion (e.g.: wall 
thickening, cavity area, endocardial motion). 

3. The cardiac data was separated into two groups 
based on wall motion scoring: Normal (score = 1), 
Abnormal (score = 2-4). 

4. Two HMMs were then developed for each 
segment: one for normals and one for abnormals. 
Thus, there were 12 trained models in total. 

5. Finally, the trained HMMs (models) were then be 
used to classify a new (unseen) dataset. 

 
3.3. Feature Vector / Object Representation 
 
As mentioned earlier, several features could be used to 
detect segmental wall motion abnormalities. In our previous 
paper [2], we used myocardium area as the feature 
(observation) vector, which gave a good accuracy of 

                                                 
2 A semi-automatic boundary detection software developed by 
Mirada Solutions Ltd, Oxford, UK. 
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classification. In this paper, we chose the ‘cavity area’ (area 
under endocardial contour) for each of six segments, as 
shown in Figure 2. This feature vector was suggested by our 
cardiologist collaborators as it is the simplest and easiest 
observation representation that can be viewed from all 
echocardiographic data. Furthermore, we need only 
endocardial contours (which are easier to track/segment than 
epicardial contours) in order to compute for the cavity area. 
The cavity area (CA) is then normalized by the following 
equation (1): 

( )
( ) ED

ED

CA CA i
CA i

CA

−
=                           (1) 

where CAED = Cavity Area at End of Diastolic. 

S1

S2

S3 S4

S5

S6

 
Figure 2: Cavity Area (CA) for all six segments of 2C data 

(S1 – S6 = CA for Segment 1 – Segment 6) 

3.4. Training 
 
The sequential nature of the heart phases can be well 
modelled by a left-right HMM. We developed two models 
for each segment: one for normals and another for 
abnormals. Each model is comprised of three hidden states. 
In our case, the states of the HMM do not have a true 
physical meaning – they simply reflect common statistical 
properties of the observation vectors in the feature space. 
We could have employed more states but that would require 
more training samples for an accurate estimation of the 
model parameters [6]. 

We trained the two HMMs (one for normals, one for 
abnormals) in an unsupervised manner. Prior to training, all 
dataset were resampled to have 30 frames per patient. We 
then calculated the normalised cavity area for each frame, as 
previously described. 

In the first stage of training, we initialised the model 
parameters as follows. For each patient in the dataset, the 
first ten frames were assigned to state 1, the next ten to state 
2 and the final ten to state 3. The parameters of the transition 
matrix aij were then initialised using the maximum 
likelihood estimates, based on the following equation (2): 

ij ij ik
k

a n n=                                 (2) 

where nij is the total number of transitions from state i to 
state j over all of the label sequences. 

The observation probability densities bi (which were 
Gaussian) were initialised by fitting a Gaussian to the set of 
features extracted from the frames assigned to each state i. 
Following initialisation of the HMM parameters, we then ran 
the EM algorithm to update the model parameters until the 
change in the log likelihood was less than 0.01% (indicating 
convergence). 
 
3.5. Classification and Confidence Measure 
 
For classification purposes, we compute the posterior 
probability, p(model|data) for all models and the maximum 
value gives the most probable model for the data. The 
posterior probability can be computed by using Bayes’ rule: 

=

model

modeldatap

modelpmodeldatap
datamodelp

),(

)()|(
)|(     (3) 

where p(data|model) is computed using the forwards-  
backwards algorithm and p(model) is the prior probability 
for each model. 

A confidence measure is then needed to quantify the 
degree of confidence in the result (i.e. how well a model 
matches the data). The resulting posterior probability 
p(model|data) is a number in the range [0,1]. We can then 
assess the confidence in the resulting classification by 
assessing how close this value is to 1.  

For example, we have 2 models: one for Normals (N) and 
one for Abnormals (A). Suppose that p(N | data) = 0.99 and 
p(A | data) = 0.01, then we would  be fairly sure that this 
person has a normal (healthy) heart. However, if instead we 
found that      p(N | data) = 0.51 and p(A | data) = 0.49 then 
we would be much less sure since the difference in the 
posterior probabilities for the two models is very small. A 
suitable confidence measure is therefore:  

( ) ( )dataApdataNpconfidence −=           (4) 

which is zero if the two probabilities are 0.5 (maximal 
uncertainty) and 1.0 if either of the probabilities equals 1.0 
(maximal certainty). 
 

4. RESULTS AND DISCUSSION 
 
The new approach was evaluated using two classification 
experiments: 1) a leave-one-out cross validation and 2) a 
new dataset testing experiment. Recall that we have a total 
of 30 sequences: 10 Normals and 10 Abnormals are used for 
training set and the remaining 10 are the testing set.  

In a leave-one-out cross-validation one of the 10 
sequences for the model being tested is held out and the 
remaining 9 sequences are used to derive the HMM. The 
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held-out sequence is then tested on this HMM and the other 
fully trained HMM. Tables 1 and 2 show the classification 
accuracy results for rest and stress data using both global 
and local classification approach. The global classification 
method can be found in our previous paper [2]. 

 
Table 1: Classification accuracy of ‘rest’ sequences using a 

leave-one-out approach 
Global Classification (%) Local Classification (%) 
Normal Abnormal  Normal Abnormal 

S1 90 100 
S2 90 80 
S3 80 80 
S4 80 60 
S5 100 90 

100 80 

S6 100 80 
 
Table 2: Classification accuracy of ‘stress’ sequences using 

a leave-one-out approach 
Global Classification (%) Local Classification (%) 
Normal Abnormal  Normal Abnormal 

S1 80 70 
S2 80 50 
S3 70 100 
S4 90 70 
S5 80 70 

90 60 

S6 70 80 
 

In the testing experiment, we computed the log 
likelihood that each model (Normal and Abnormal) gives to 
the test sequences and classified them based on equation (3) 
(refer to Section 3.5). Table 3 gives the classification 
accuracy of the 10 testing sets for both rest and stress data. 

Table 3: Classification accuracy for the testing dataset 
 Classification Accuracy (%) 

Testing Set S1 S2 S3 S4 S5 S6 

2CV (Rest)  80 80 70 90 90 100 
2CV (Stress) 80 90 60 70 70 80 

 
As can be seen from the Tables 1 and 2, we can achieve 

more or less the same accuracy of local classification as the 
global ones. Local classification is harder because 
sometimes not all segments can be clearly seen in 
echocardiographic data, especially around apex area 
(segments 3 and 4). As for the testing experiment (refer to 
Table 3), a good accuracy of classification was achieved 
instead of a few number of data is used for trained model. 
This shows the potential use of HMM for classification. 

In each experiment, the classification accuracy for the 
normal model is higher than for the abnormal case. This is 
because the wall motion of healthy hearts is better-defined 
than for the abnormal case which really covers subcategories 
of abnormal functional behaviour i.e. hypokinetic, akinetic, 

dyskinetic. Since we had a limited number of patient datasets 
for the current study, we grouped all the abnormal cases into 
just one model. For a more accurate classification, they 
should be modelled according to each abnormal category. 

Comparing experiments, the stress sequence has the 
lowest accuracy. This can be explained in part by the 
relatively large movement of the heart during stress. 
Furthermore, the image quality is often poor for this type of 
acquisition which affects the accuracy in tracing the 
myocardial borders.  

5. CONCLUSIONS 
 
In this paper, a new approach of local wall motion analysis 
of stress echocardiography data has been proposed based on 
HMMs. For each wall segment, two HMMs have been 
trained for the normal (healthy) and abnormal cases. A good 
accuracy of classification was achieved despite the limited 
number of data used. These encouraging results could be 
improved further by: 1) increasing the number of training 
data, for example at least 50 patients for each model, 2) 
developing different models for different types of 
abnormality and 3) investigating other possible observation 
vectors. The general approach would be equally applicable 
to 3D stress echocardiography which is receiving a lot of 
interest from the cardiology community at the current time. 
Finally, the methodology is not modality specific and could 
be equally applied to stress MRI. 
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